Numerical Methods and Simulation Techniques for Flow with Shear and Pressure dependent Viscosity
نویسندگان
چکیده
In this note we present some of our recent results concerning flows with pressure and shear dependent viscosity. From the numerical point of view several problems arise, first from the difficulty of approximating incompressible velocity fields and, second, from poor conditioning and possible lack of differentiability of the involved nonlinear functions due to the material laws. The lack of differentiability can be treated by regularisation. Then, Newton-like methods as linearization technique can be applied; however the presence of the pressure in the viscosity function leads to an additional term introducing a new non-classical linear saddle point problem. The difficulty related to the approximation of incompressible velocity fields is treated by applying the nonconforming Rannacher-Turek Stokes element. However, then we are facing another problem related to the nonconforming approximation for problems involving the symmetric part of gradient: the classical discrete ’Korn’s Inequality’ is not satisfied. A new and more general approach which involves the jump across the inter-element boundaries should be used, which requires a small modification of the discrete bilinear form by adding an interface term, penalizing the jump of the velocity over edges. This is achieved via a modified procedure in the derivation of a Discontinuous Galerkin formulation. As a solver for the discrete nonlinear systems, a Newton variant is discussed while a ’Vanka-like’ smoother as defect correction inside of a direct multigrid approach is presented. The results of some computational experiments for realistic flow configurations are provided, which contain a pressure dependent viscosity, too.
منابع مشابه
Numerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملNumerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method
This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...
متن کاملTransonic Turbulent Flow Simulation using Pressure-Based Method and Normalized Variable Diagram
A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria for this procedure are determined from Normalized Variable diagram (NVD) scheme.The procedure incorporates the ε−k eddy-viscosity turbulence model. The algorithm is tested for inviscid and turbulent transonic ...
متن کاملFinite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process
Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003